
Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 1/15

How to add a new notation…?
Technical interface description

Diploma thesis with working title Open DB Designer
dataMagus

Monika Schwitter & Jürg Zgraggen, 8Ibb-a

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 2/15

Revision

Version Date Comment Author

1.0 18.11.2007 First version created JAZ

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 3/15

Table of contents
REVISION ... 2
TABLE OF CONTENTS ... 3
1 INTRODUCTION .. 4
2 A BRIEF EXCURSION ABOUT THE CONCEPTION .. 4
3 HOW TO WRITE YOUR OWN NOTATION .. 4
4 DEFINITION OF ELEMENTARY POINTS ... 5
4.1 The different points ..5
5 IMPORTANT INTERFACES TO KNOW ABOUT... 7
6 IMPORTANT CLASSES TO KNOW ABOUT .. 11
7 HOW AND WHEN THE PLUG-INS WILL BE LOADED .. 14
8 GOOD LUCK.. 14
INDEX OF FIGURES.. 15
INDEX OF TABLES ... 15

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 4/15

1 Introduction
dataMagus is a software to learn database modelling. The goal is to help students to
understand the concepts of various databases. Therefore, the software also supports
different notations on the different layers (logical, physical relational and physical object-
oriented). Because there exists a variety of possible notations we’ve decided to use the
concept of plug-ins to gain a high flexibility.

The main goal of this document is to describe the interfaces needed for a notation plug-ins.
It should give you a short overview about how to write a new notation for the dataMagus
software. The target group it has been written for are developers.

2 A brief excursion about the conception
In dataMagus only one logical schema (also known as layer) exists. The user can model its
database here. Furthermore, there are two different physical schemas (a relational one and a
object-oriented one) at the moment. These schemas will be created out of the logical one.
So, if you are about to write a notation you must decide for which schema you'd like to write
it for.

3 How to write your own notation
Before you can start writing a new notation you must understand several main interfaces.
The highest abstract INotation interface is used to define the main functionality every
notation must have. However, you shouldn’t use it straight away.
Because all notations have a close relationship to its underlaying schema there are some
important sub interfaces. The ILogicalNotation and IPhysicalNotation are the global
interfaces to differ the two principal schemas. The ILogicalNotation interface directly defines
the methods and properties to be implemented whereas the IPhysicalNotation is only a
general marker interface for physical notations. So, if you'd like to write a notation for a
relational schema you have to implement IphysicalRelationalNotation. If you’d like to write a
notaion for a objectoriented schema you must implement IPhysicalObjectorientedNotation.

The conception for implementing new notations is based on the UserControls of the
Microsoft .NET Framework and the System.Drawing namespace. Entities, tables or classes
(depending on the physical schema) will be realized as UserControls by extending the
ElementControl, whereas all relationships or associations must be drawn into the graphical
context. Furthermore, there exists a NotationHelper class which helps to calculate the
needed points in a notation very easily. However, the developer of the notation can also
calculate the points at its own if he/she wants to. The event handling on the UserControl can
be done directly by the plug-in developer.

With the few following steps a new notation can be implemented:

• Create a new project with the namespace
dataMagus.PlugIns.Notations.<yourNotation>.

• Add the dataMagus.Common assembly to your references.
• Create a new class (which must have a default constructor) by implementing the

ILogicalNotation, IPhysicalRelationalNotation or IPhysicalObjectorientedNotation.

• Create a new UserControl which extends the ElementControl class.
• Optional: Create a class only used for drawing relationships
• Now read each section on the interfaces to be implemented and deal with it.
• Compile and copy your new notation into the root of the software directory.

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 5/15

• Now when you've done every thing right, your notation should be loaded
automatically into the dropdown on the specified schema. If not, please look at one
of the four existing notations to find and fix your problem.

4 Definition of elementary points
In the next sections we're going to use several expressions which must be understood.

4.1 The different points

There are several different points.

Figure 1 – Points within a regular relationship

straight

symbol
selfSymbol

edge

topRight

selfGap

gap

distance

symbol

Figure 2 – Points within a self-relationship

Figure 3 – Calculation of a straight point

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 6/15

The symbol point
When we talk about a symbol point on regular relationships between two different controls
we mean the location where the straight line between the middle point of the two controls
subtends the controls border. In nearly all cases this point will be calculated with a margin
(gap) around the control. Normally, this point can be used to draw the literal cardinalities or
role names.

The straight point
A straight point names the point that stands in a 90 degree angle from the symbol point to
the control. It will mostly be used to draw the notations cardinality sign. This point depends
always on its symbol point and will also be moved when the symbol point moves.

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 7/15

5 Important interfaces to know about

Figure 4 - Class diagram of the notations

The description of the interfaces is not complete and will only include important things.
Please seek advice in the source code documentation.

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 8/15

INotation
This interface is the root interface of all notations in the system.

Class member Description

Name Name of the notation to be shown in the dropdown list.

OnMouseDown Tells the notation that a MouseDown event has happend on the
schema control. This can be important when relationships
(which will be drawn) also have (drawn) controls to react.

Parameters:
e: MouseEventArgs

Table 1 - Description of INotation

ILogicalNotation
This interface is the root interface of all logical notations in the system.

Class member Description

BeginDrawingRelationships Tells the notation that the drawing of the relationships will
begin. This can be helpful, if the notation wants to cleanup
before starting the draw.

GetEntityControl Gets the control for an entity.

Parameters:
entity: Logical entity on which the control is based.

Returns an ElementControl if successful or null to ignore.

DrawRelationship Tells the notation to draw a relationship.

Parameters:
relationship: Logical relationship to draw.
element1: Control of the first element of the relationship.
element2: Control of the second element of the relationship.
showRelationshipName: Indicator if the name of the
relationship should show up.
showRolenames: Indicator if the name of the roles should
show up.
showCardinalities: Indicator if the cardinalities should show
up.
context: Graphics context to draw in.

Table 2 - Description of ILogicalNotation

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 9/15

IPhysicalNotation
This interface is the root marker interface of all physical notations in the system.

IPhysicalRelationalNotation
This interface is the root interface of all physical relational notations in the system.

Class member Description

BeginDrawingRelationships Tells the notation that the drawing of the relationships will
begin. This can be helpful if the notation wants to cleanup
before starting to draw.

GetTableControl Gets the control for a table.

Parameters:
table: Physical table the control is based on.

Returns an ElementControl if successful or null to ignore.

DrawRelationship Tells the notation to draw a relationship.

Parameters:
relationship: Logical relationship to draw.
element1: Control of the first element of the relationship.
element2: Control of the second element of the relationship.
showRelationshipName: Indicator if the name of the
relationship should show up.
showRolenames: Indicator if the name of the roles should
show up.
showCardinalities: Indicator if the cardinalities should show
up.
context: Graphics context to draw in.

Table 3 - Description of IPhysicalRelationalNotation

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 10/15

IPhysicalObjectorientedNotation
This interface is the root interface of all physical object-oriented notations in the system.

Class member Description

BeginDrawingAssociations Tells the notation that the drawing of the relationships will
begin. This can be helpful if the notaion wants to cleanup before
start the drawing.

GetClassControl Gets the control for a class.

Parameters:
classElement: Physical class the control is based on.

Returns an ElementControl if successful or null to ignore.

DrawAssociation Tells the notation to draw a relationship.

Parameters:
association: Physical association to draw.
element1: Control of the first element between the association.
element2: Control of the second element between the
association.
showAssociationName: Indicator if the name of the
association should show up.
showRolenames: Indicator if the name of the roles should
show up.
showCardinalities: Indicator if the cardinalities should show
up.
context: Graphics context to draw in.

Table 4 - Description of IPhysicalObjectorientedNotation

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 11/15

6 Important classes to know about

Table 5 - Class NotationHelper

The description of the classes is not complete and will only include important things. Please
seek advice in the source code documentation.

ElementControl
This class can be used by notations for elements on the schema. It implements a small
communication between the element and the schema. Basically, you don't have to care
about that. However you should override the following methods:

Class member Description

DrawControl Draws the whole control into a graphics context.

Parameters:
context: Graphics context

CalcControlSize Calculate the whole size of the control

Returns: Size of the control.

Table 6 - Description of ElementControl

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 12/15

NotationHelper
This static class contains helper functionality for the notations.

Class member Description

CalcCorrectionMultiplier Calculates a multiplier which then will be multiplied with the X or
Y axis of the point. This will help to correct the position of
overlaying points. Each call will decrease the multiplier and hop
between the negative and positive numerical range.

Parameters:
master: Element of the first control.
masterLinksCounter: Method implementing the
CountLinksBetween delegate.
slave: Element of the second control.
betweenCounter: Dictionary<long, int>. The helper method can
store data in.
Returns the multiplier (or factor) to be used for correction of the
needed points.

Examples:
If an element has 4 relationships (even) with another element,
this method will return -2 / 2 / -1 / 1 / 0
If an element has 3 relationships (odd) with another element, this
method will return -1 / 1 / 0

CalcPoints Calculates helpful points between two element controls.

Parameters:
master: Master control.
slave: Slave control.
gap: Gap around the controls.
divergency: Divergency on the X or Y axis depending on the
location of the points.

Out Parameters:
symbol1: The symbol point of the master.
symbol2: The symbol point of the slave.
straight1: The straight point of the master.
straight2: The straight point of the slave.
middle: The middle point between master and slave.

CalcSelfPoints Calculates helpful points for element controls having a self
relationship. The calculation is based on the top right of the
control.

Parameters:
ctrl: Control with the self relation.
gap: Gap around the control.
selfGap: Enlarge gap to calculate the selfSymbol point.
distance: Distance from the top right of the control.

Out Parameters:
symbol1: The symbol point on the top.
symbol2: The symbol point on the right.

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 13/15

straight1: The straight point on the top.
straight2: The straight point on the right.
selfSymbol1: The self symbol point on the top.
selfSymbol2: The self symbol point on the right.
edge: The edge where the self relation gets together.

IsPointInsideElement Checks if a point is still inside an element control. This method
can be used to check if a point is leaving the element.

Parameters:
element: Element control.
p: Point to be checked.
gap: Gap around the control.
Returns true if point is still inside, otherwise false.

EvalBestConnectionPoint Evaluates the best connection point of four points (ex. diamond).

Parameters:
ctrl: Control which will be linked to the connection point.
top: Top point of the figure.
bottom: Buttom point of the figure
left: Left point of the figure
right: Right point of the figure
Returns the best point to link to.

EvalPointsLocation Evaluates where the symbol and straight point is located. These
two points are enough for the evaluation because they have a
functional dependency on each other. If symbol point is equal the
straight point, SideLocation.Undefined will be returned.

Parameters:
symbolPoint: Symbol point.
straightPoint: Straight point
Returns the location of the points.

CreateTrianglePolygon Creates a triangle polygon where the height is calculated by the
difference between the start and help point.

Parameters:
start: Start point of the triangle.
help: Help point of the triangle.
width: Width of the triangle.
Returns Point[] containing the polygon.

EvalMiddle Evaluates the middle between two points.

Parameters:
p1: Point 1.
p2: Point 2.
Returns the middle point.

Table 7 - Description of NotationHelper

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 14/15

7 How and when the plug-ins will be loaded
The singleton class NotationManager cares about all notations in the application. At the start
of the software, the root directory of the application will be scanned for assemblies
implementing the INotation interface. Instances of all found assemblies will be created, kept
in memory and invoked on demand.

8 Good luck
The challenge of a new notation lies in the specific representation of the logical or physical
layer. The NotationHelper class can help you solving rudimental things. Although these little
helpers are not extremely good and show no high-performance at drawing, it can help to
concentrate on the essentials of the new notation. We've chosen the pragmatic approach.
Good luck.

Lucerne University of Applied Sciences and Arts
Diploma thesis
OPEN DB DESIGNER - DATAMAGUS

HSLU

© Monika Schwitter & Jürg Zgraggen Page 15/15

Index of figures
Figure 1 – Points within a regular relationship...5
Figure 2 – Points within a self-relationship..5
Figure 3 – Calculation of a straight point ..5
Figure 4 - Class diagram of the notations ...7

Index of tables
Table 1 - Description of INotation ..8
Table 2 - Description of ILogicalNotation ..8
Table 3 - Description of IPhysicalRelationalNotation ..9
Table 4 - Description of IPhysicalObjectorientedNotation ...10
Table 5 - Class NotationHelper ..11
Table 6 - Description of ElementControl ...11
Table 7 - Description of NotationHelper ..13

